
Managing A Small Open
Source Project

April 9, 2005
WPLUG

Warren Dukes



Preface

_ This presentation is simply one developers
view of how the open source model has
worked for one project, Music Player
Daemon

_ This Presentation includes:
– Opinions
– Observations
– Advice for users and developers



The Example

Music Player Daemon (MPD) allows remote access for
playing music (MP3, Ogg Vorbis, FLAC, AAC, Mod, and
wave files) and managing playlists. MPD is designed for
integrating a computer into a stereo system that provides
control for music playback over a local network. It is also
makes a great desktop music player, especially if you are a
console junkie, like frontend options, or restart X often.



Why Start A Project?

_ To satisfy an itch
_ To contribute something to the

community
_ To be famous
_ Simply enjoy coding



Why Open Source

_ Learn more about coding through peer
review

_ Can use current open source code
_ Learn from open source code
_ Can build a community of developers
_ The code can potentially survive longer and

take on a life of its own
_ Looks good on a resume!

– Potential employers actually have samples of
your code



What License To Choose

_ GPL
– If someone makes changes to your code and

then distributes binaries, they must also
distribute the code changes

– Strict patent limitations
_ BSD

– Anyone can change and use the code as they
wish so long as credit is given to the original
authors



Coding Details

_ Choosing which language
– C, C++, C#, Java
– Perl, Python, PHP, Ruby

_ Choosing dependencies/requirements
_ Code Access

– Tarballs
– Version Control

_ CVS
_ Subversion
_ Arch
_ Bitkeeper



Documentation

_ README
_ --help

– command line parameters and options
_ --version

– name of the program, version number
– LICENSE, no-gaurantee, contact info

_ Man page
_ FAQ
_ HOWTO's
_ Wiki



Wiki Example



Publicizing the Project

_ Webpage
– Sourceforge
– Savannah
– Your own web site

_ Open Source Software Sites
– Freshmeat
– IceWalkers



SourceForge



MPD Webpage



Development Cycle

_ Development Cycle
– Specification
– Design
– Implementation
– Testing
– Fix Bugs
– Release
– Feedback
– Rinse and Repeat

_ Open source shortens the feedback loop
between Users and Developers



Release

_ Major Releases
– Major design phase
– New Features
– Protocol changes
– Longer Development Cycle

_ Minor Releases
– Bug Fixes
– Minor feature enhancements
– Short Development Cycle



Minor and Major Development
Cycles

Spec

Design

Implementation

Testing

Bug FixingRelease

Feedback
Minor Release

Cycle

Major Release
Cycle



Packaging

_ Source Tarball
– C* based programs – configure, make, make

install
_ Packages

– dpkg
– rpms

_ Distro's and Repositories
– Gentoo
– FreeBSD/NetBSD/OpenBSD
– Debian/Ubuntu
– Fedora

_ Let the distribution developers package your
code



Types of Feedback

_ Opinions
– Sweet! / Sucks!
– Ratings

_ Feature Requests
– New Features (Users)
– Design Changes (Developers)

_ “Backend” changes, efficiencies
_ Protocol changes

_ Bugs
– Spelling
– Non-Critical
– Critical
– Show Stoppers



Positive Feedback Example



Freshmeat Feedback Example



Feedback Mechanisms

_ Bug Tracker / Feature Request Tracker
– Bugzilla
– Mantis

_ Community
– Mailing Lists
– Forums
– IRC Channel
– Email

_ Ratings
– Freshmeat
– Polls - Magazines/Forums



Bug Reporting

_ Bug Reports from Users are indespensible
– Leave contact info
– Give Every Detail that You Can

_ version numbers
_ config files
_ explicit error messages / output
_ OS, distribution

_ Never simply say X doesn't work!
_ Be patient.



Feature Requests

_ Understand the purpose for program X
– Does the feature request match the

goals/purpose?
_ If only one person requests something very

specific, don't expect it to be implemented
– even if it only takes one line of code
– even if you supply a patch, the community will

still be forced to support this code
_ developers time is limited



Coordinating Development

_ Documentation! Documentation!
Documentation!
– Keep documentation up-to-date
– Keeps docs in you version control system
– Wiki – great for ideas in progress

_ Bug Tracker
– Very useful for delegating responsibility

_ Version Control Access
– Subversion



Community Structure

_ Leader
_ Board / Committee
_ Developers
_ Administrators

– Webmaster
– Docwriters

_ Testers
_ Users

– User and testers who give feedback (such as
filing bug reports) are indespensible.



MPD Community Structure

Leader

MPD Developers Client Developers

Testers Support Helpers

Users

Administrators



Contributing

_ Feedback
– Bug Reports
– Feature Requests
– Opinions

_ Testing
_ Documenation
_ Developers



Coordinating with Other
Projects

_ Competitors!
– Share ideas, if possible
– Share code

_ Collaborating
– Can broaden the user base of your project
– Can potentially bring in new developers
– Be open minded!



MPD Collaborations

_ Dependency collaborations
– libao

_ Web “Jukebox” collaborations
– Netjuke
– Jinzora

_ Embedded collaborations
– IPOD Linux
– Networked Audio Player

_ Analog Devices Inc. (ADI) demonstrated a networked
audio player, running uClinux on the Blackfin STAMP
Board at the Embedded Systems Conference in San
Francisco.

_ http://www.linuxdevices.com/articles/AT9272421886.h
tml



Do's and Don'ts

_ Users
– Don't be impatient

_ wait for help

– Do search with google
– Do searches in forums/mailings lists
– Do Give detailed bug reports and feature

requests
_ Developers

– Don't be arrogant
_ don't assume you know more about how things

'should' work

– Do propose ideas and promote discussion of
these ideas

– Don't simply talk, but also Code!



My Development Philosophy

_ I do this for fun
_ I have no obligation to implement or

anything.
_ I care about my users.
_ I have a vision of how the things should work

and evolve.
_ My time is limited, so the things I do spend

time on need to be worthwhile.


